博客
关于我
R语言泊松Poisson回归模型预测人口死亡率和期望寿命
阅读量:182 次
发布时间:2019-02-28

本文共 1163 字,大约阅读时间需要 3 分钟。

人口统计模型的核心是通过死亡率数据来预测个体的期望寿命。传统模型通常基于稳定的人口统计数据,但由于生活条件的不断改善,这种假设存在明显偏差。为此,我们采用了更为全面的数据集,其中包含具体年龄和时间点的死亡人数和暴露人数。

数据处理的具体步骤如下:

  • 读取死亡率数据(DE.txt)和暴露人数数据(EXPS.txt),并跳过前几行的无关信息。
  • 对于每个年龄x和时间t,计算死亡率 qx,t = Dx,t / Ex,t。这些数据以矩阵形式存储,便于后续可视化和回归分析。
  • 在实际操作中,为了避免零值问题,我们对死亡率 qx,t 进行了如下处理:

  • 对于死亡率为零的情况,设置为缺失值(NA)。
  • 对于暴露人数为零的情况,同样设置为缺失值(NA)。
  • 这些处理步骤是为了确保后续的数据分析和建模能够顺利进行。接下来,我们通过可视化工具将 qx,t 表示为x和t的函数,以便直观地观察其变化趋势。

    为了建立死亡率的预测模型,我们采用了指数模型:

    log(qx,t) = Ax + Bx·Kt
    其中,A和B是年龄相关的系数,Kt反映了生活条件改善带来的死亡率下降。模型参数A和B需要通过数据估计,而Kt则需要根据历史数据推断未来趋势。

    在参数估计阶段,我们使用了二项式模型作为基本框架,并考虑了泊松回归的适用性。由于死亡率通常较低,泊松分布可以很好地近似二项分布。最终,我们采用以下回归模型来估计参数:

    Dx,t ~ Poisson(exp(log(Ex,t) + Ax + Bx·Kt))

    通过回归分析,我们得到了A、B和K的估计值。具体来说:

    • A表示年龄对死亡率的平均影响。
    • B表示年龄与时间相关的影响。
    • Kt则反映了生活条件改善的时间序列变化。

    为了直观展示这些参数的变化趋势,我们分别绘制了A和Kt随时间的演变图。通过这些图表,可以清晰地观察到年龄与时间对死亡率的影响。

    在实际应用中,我们发现直接使用历史数据进行线性预测存在局限性。因此,我们引入了Lee-Carter模型来估计未来死亡率的变化。具体来说,我们通过回归分析未来Kt的趋势,并结合历史数据,预测了未来多个时间点的死亡率。

    基于以上模型,我们可以对具体的出生年份和年龄组进行期望寿命的预测。以某个具体的出生年份为例,期望寿命的计算公式为:

    q_{x,t} = exp(Ax + Bx·Kt)

    通过对历史数据和未来预测的对比,我们评估了不同预测方法的准确性。实验结果表明,结合生活条件改善的指数模型能够更准确地预测未来死亡率。

    最终,我们对不同年龄组和时间点的人群进行了期望寿命的计算,并对结果进行了可视化分析。通过这些图表,我们可以清晰地观察到期望寿命随着年龄和时间的变化趋势。

    通过上述方法,我们不仅能够准确预测个体的期望寿命,还能够为人口统计研究提供一个可扩展的框架。

    转载地址:http://ukic.baihongyu.com/

    你可能感兴趣的文章
    No fallbackFactory instance of type class com.ruoyi---SpringCloud Alibaba_若依微服务框架改造---工作笔记005
    查看>>
    No Feign Client for loadBalancing defined. Did you forget to include spring-cloud-starter-loadbalanc
    查看>>
    No mapping found for HTTP request with URI [/...] in DispatcherServlet with name ...的解决方法
    查看>>
    No module named 'crispy_forms'等使用pycharm开发
    查看>>
    No module named cv2
    查看>>
    No module named tensorboard.main在安装tensorboardX的时候遇到的问题
    查看>>
    No module named ‘MySQLdb‘错误解决No module named ‘MySQLdb‘错误解决
    查看>>
    No new migrations found. Your system is up-to-date.
    查看>>
    No qualifying bean of type XXX found for dependency XXX.
    查看>>
    No resource identifier found for attribute 'srcCompat' in package的解决办法
    查看>>
    no session found for current thread
    查看>>
    No toolchains found in the NDK toolchains folder for ABI with prefix: mips64el-linux-android
    查看>>
    NO.23 ZenTaoPHP目录结构
    查看>>
    NO32 网络层次及OSI7层模型--TCP三次握手四次断开--子网划分
    查看>>
    NoClassDefFoundError: org/springframework/boot/context/properties/ConfigurationBeanFactoryMetadata
    查看>>
    Node JS: < 一> 初识Node JS
    查看>>
    Node-RED中使用JSON数据建立web网站
    查看>>
    Node-RED中使用json节点解析JSON数据
    查看>>
    Node-RED中使用node-random节点来实现随机数在折线图中显示
    查看>>
    Node-RED中使用node-red-browser-utils节点实现选择Windows操作系统中的文件并实现图片预览
    查看>>